Problem of The Week \#1
(Fall 2023)

Let's shuffle a standard deck of 52 cards (no jokers), then reveal cards one by one until we've seen three kings. On average, how many cards do we expect we'll see?

Solution:

We should expect to see 31.8 cards.
Proof. If we keep going to the end of the deck, we'll reveal C_{0} cards before the first king turns up, then C_{1} cards between the first and second king, C_{2} between the second and third, C_{3} between the third and fourth, and C_{4} after the fourth. Counting all non-kings in the deck, we get $C_{0}+C_{1}+C_{2}+C_{3}+C_{4}=52-4=48$.
Now take expected values. Because the cards are shuffled randomly, we know that all five values of $E\left(C_{i}\right)$ are equal. Then, by linearity of expectation,

$$
E\left(C_{i}\right)=\frac{1}{5} \cdot 5 E\left(C_{i}\right)=\frac{1}{5}\left[E\left(C_{0}\right)+\cdots+E\left(C_{4}\right)\right]=\frac{1}{5} E\left(C_{0}+\cdots+C_{4}\right)=\frac{48}{5} .
$$

This means that the expected number of cards revealed is

$$
E\left(C_{0}+1+C_{1}+1+C_{2}+1\right)=3+3 \cdot \frac{48}{5}=\frac{159}{5}=31.8 \text {. }
$$

Source: George Stoica, "Quickies 1119," Mathematics Magazine 95:2 (April 2022), 158.

