

PROBLEM OF THE WEEK #10 (Fall 2022)

Define $F(x, y) = x + y + x^2y + xy^2 + x^3y^2 + x^2y^3 + x^4y^3 + x^3y^4 + \dots$

Show that if x, y, and z are real numbers with absolute values less than $\sqrt{2} - 1$, then F(x, F(y, z)) = F(F(x, y), z).

Solution:

Proof. Factor by grouping to obtain $F(x, y) = (x + y)(1 + xy + x^2y^2 + x^3y^3 + ...)$. When |xy| < 1, this geometric series converges, and $F(x, y) = \frac{x + y}{1 - xy}$. Thus, for any angles θ and φ with $|\tan \theta \tan \varphi| < 1$, we have

$$F(\tan\theta,\tan\varphi) = \frac{\tan\theta + \tan\varphi}{1 - \tan\theta\tan\varphi} = \tan(\theta + \varphi).$$

Also, by a half-angle formula, we know that $\tan \frac{\pi}{8} = \frac{1-\cos \frac{\pi}{4}}{\sin \frac{\pi}{4}} = \frac{1-(1/\sqrt{2})}{1/\sqrt{2}} = \sqrt{2}-1$. Therefore, given x, y, z with absolute values less than $\sqrt{2}-1$, we can let $\alpha = \arctan x$, $\beta = \arctan y$, and $\gamma = \arctan z$, and we know that $\alpha, \beta, \gamma \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. It follows that $\alpha, \gamma, \alpha + \beta$,

 $\beta = \arctan y$, and $\gamma = \arctan z$, and we know that $\alpha, \beta, \gamma \in \left(-\frac{\pi}{8}, \frac{\pi}{8}\right)$. It follows that $\alpha, \gamma, \alpha + \beta$, and $\beta + \gamma$ are all in the interval $\left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$, which means their tangents are in (-1, 1), and so are all products of those tangents. Finally:

$$F(x, F(y, z)) = F(\tan \alpha, F(\tan \beta, \tan \gamma))$$

= $F(\tan \alpha, \tan(\beta + \gamma))$
= $\tan[\alpha + (\beta + \gamma)]$
= $\tan[(\alpha + \beta) + \gamma]$
= $F(\tan(\alpha + \beta), \tan \gamma)$
= $F(F(\tan \alpha, \tan \beta), \tan \gamma)$
= $F(F(x, y), z).$