Problem of the Week \#10

(Fall 2022)

Define $F(x, y)=x+y+x^{2} y+x y^{2}+x^{3} y^{2}+x^{2} y^{3}+x^{4} y^{3}+x^{3} y^{4}+\ldots$.
Show that if x, y, and z are real numbers with absolute values less than $\sqrt{2}-1$, then $F(x, F(y, z))=F(F(x, y), z)$.

Solution:

Proof. Factor by grouping to obtain $F(x, y)=(x+y)\left(1+x y+x^{2} y^{2}+x^{3} y^{3}+\ldots\right)$.
When $|x y|<1$, this geometric series converges, and $F(x, y)=\frac{x+y}{1-x y}$.
Thus, for any angles θ and φ with $|\tan \theta \tan \varphi|<1$, we have

$$
F(\tan \theta, \tan \varphi)=\frac{\tan \theta+\tan \varphi}{1-\tan \theta \tan \varphi}=\tan (\theta+\varphi)
$$

Also, by a half-angle formula, we know that $\tan \frac{\pi}{8}=\frac{1-\cos \frac{\pi}{4}}{\sin \frac{\pi}{4}}=\frac{1-(1 / \sqrt{2})}{1 / \sqrt{2}}=\sqrt{2}-1$.
Therefore, given x, y, z with absolute values less than $\sqrt{2}-1$, we can let $\alpha=\arctan x$, $\beta=\arctan y$, and $\gamma=\arctan z$, and we know that $\alpha, \beta, \gamma \in\left(-\frac{\pi}{8}, \frac{\pi}{8}\right)$. It follows that $\alpha, \gamma, \alpha+\beta$, and $\beta+\gamma$ are all in the interval $\left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$, which means their tangents are in $(-1,1)$, and so are all products of those tangents. Finally:

$$
\begin{aligned}
F(x, F(y, z)) & =F(\tan \alpha, F(\tan \beta, \tan \gamma)) \\
& =F(\tan \alpha, \tan (\beta+\gamma)) \\
& =\tan [\alpha+(\beta+\gamma)] \\
& =\tan [(\alpha+\beta)+\gamma] \\
& =F(\tan (\alpha+\beta), \tan \gamma) \\
& =F(F(\tan \alpha, \tan \beta), \tan \gamma) \\
& =F(F(x, y), z) .
\end{aligned}
$$

