Problem of the Week \#9

(Fall 2022)

Given real numbers $a_{0}>b_{0}>0$, construct a pair of sequences inductively as follows. For each n, let a_{n+1} be the arithmetic mean of a_{n} and b_{n} :

$$
a_{n+1}=\frac{a_{n}+b_{n}}{2} .
$$

And let b_{n+1} be the harmonic mean of a_{n} and b_{n} :

$$
\frac{1}{b_{n+1}}=\frac{\frac{1}{a_{n}}+\frac{1}{b_{n}}}{2} .
$$

Show that the sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ both converge to the same limit, which is $\sqrt{a_{0} b_{0}}$, the geometric mean of a_{0} and b_{0}.

Solution:

Proof. Define $A(x, y)=\frac{x+y}{2}, H(x, y)=\frac{1}{\left(\frac{\frac{1}{x}+\frac{1}{y}}{2}\right)}=\frac{2 x y}{x+y}$, and $G(x, y)=\sqrt{x y}-$ the arithmetic, harmonic, and geometric means of x and y, respectively.
We are given $a_{n+1}=A\left(a_{n}, b_{n}\right)$ and $b_{n+1}=H\left(a_{n}, b_{n}\right)$. Note also that

$$
G\left(a_{n+1}, b_{n+1}\right)=\sqrt{\frac{a_{n}+b_{n}}{2} \cdot \frac{2 a_{n} b_{n}}{a_{n}+b_{n}}}=\sqrt{a_{n} b_{n}}=G\left(a_{n}, b_{n}\right),
$$

which therefore equals $G\left(a_{0}, b_{0}\right)=\sqrt{a_{0} b_{0}}$ by induction.
It is well known* that when $y>x>0$, we have $x<H(x, y)<G(x, y)<A(x, y)<y$, so

$$
b_{n}<b_{n+1}<\sqrt{a_{0} b_{0}}<a_{n+1}<a_{n} .
$$

This shows that $\left\{a_{n}\right\}$ is a decreasing sequence with lower bound $\sqrt{a_{0} b_{0}}$, and $\left\{b_{n}\right\}$ is an increasing sequence with upper bound $\sqrt{a_{0} b_{0}}$, so both sequences converge by the monotone convergence theorem. Let $\alpha=\lim _{n \rightarrow \infty} a_{n}$ and $\beta=\lim _{n \rightarrow \infty} b_{n}$. Since A is a continuous function,

$$
\frac{\alpha+\beta}{2}=A(\alpha, \beta)=A\left(\lim _{n \rightarrow \infty} a_{n}, \lim _{n \rightarrow \infty} b_{n}\right)=\lim _{n \rightarrow \infty} A\left(a_{n}, b_{n}\right)=\lim _{n \rightarrow \infty} a_{n+1}=\alpha
$$

so $\alpha+\beta=2 \alpha$, or $\beta=\alpha$. Since $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ have the same limit, it must be $\sqrt{a_{0} b_{0}}$.

Source: Suggested by Dan Swenson; see D.M.E. Foster and G.M. Phillips, "A generalization of the Archimedean double sequence," Journal of Mathematical Analysis and Applications 101:2 (July 1984), 575-581.

[^0]
[^0]: *Among people who know about it.

