Problem of the Week \#7

(Fall 2022)

If N dots can be arranged in rows to form an equilateral triangle, with one dot in the first row, two dots in the second row, and in general k dots in the $k^{\text {th }}$ row, then N is called a triangular number. For instance, ten is a triangular number (ten dots form a 4-row triangle).

In base 9 , ten is written 11. Show that every number whose base-9 digits are all 1 s is triangular.

Solution:

Proof. If T_{n} denotes the triangular number represented by a triangle with n rows, then

$$
T_{n}=1+2+\cdots+n=\frac{n(n+1)}{2} .
$$

Now let a_{j} be the number whose base- 9 digits are j consecutive 1 s , so in base 9

$$
\left\{a_{j}\right\}=\{1,11,111,1111, \ldots\} .
$$

Given $a_{k}=11 \cdots 1$ in base 9 , we have $9 a_{k}=11 \cdots 10$, and $9 a_{k}+1=11 \cdots 11=a_{k+1}$.
It is clear that $a_{1}=1=T_{1}$, so a_{1} is triangular. Now suppose for induction that a_{k} is triangular. There is some n with $a_{k}=T_{n}=\frac{n(n+1)}{2}$, and

$$
a_{k+1}=9 a_{k}+1=9 \frac{n(n+1)}{2}+1=\frac{9 n(n+1)+2}{2}=\frac{9 n^{2}+9 n+2}{2}=\frac{(3 n+1)(3 n+2)}{2}=T_{3 n+1},
$$

so a_{k+1} is triangular. By induction, a_{j} is triangular for all $j \geq 1$.

Source: G. W. Wishard. American Mathematical Monthly 39:3 (March 1932), 179.

