Problem of the Week \#6

(Fall 2022)

Notice that $2^{2}+2^{2}+3^{2}=17$, which is a prime number.
Suppose that a, b, and c are prime numbers, all of which are greater than or equal to five. Show that $a^{2}+b^{2}+c^{2}$ is not prime.

Solution:

Proof. Since a is prime and $a \geq 5, a$ is not divisible by 3 . Working modulo 3, we have $a \equiv 1$ or $a \equiv 2$, which means $a^{2} \equiv 1^{2}=1$ or $a^{2} \equiv 2^{2} \equiv 1$. Likewise, $b^{2} \equiv 1$ and $c^{2} \equiv 1$, so $a^{2}+b^{2}+c^{2} \equiv 1+1+1 \equiv 0$. That is, $a^{2}+b^{2}+c^{2}$ is a multiple of 3 . But of course, $a^{2}+b^{2}+c^{2} \geq 3 \cdot 5^{2}=75>3$.

Source: Ross Honsberger. Mathematical Gems II. The Dolciani Mathematical Expositions, No. 2. The Mathematical Association of America (1976), 37.

