Problem of The Week \#
(Fall 2022)

Let z be a complex number. Given that $z+\frac{1}{z}=2 \cos \left(5^{\circ}\right)$, find $z^{2022}+\frac{1}{z^{2022}}$.

Solution:

Choose real numbers r and θ so that $r>0$ and $z=r e^{i \theta}=r(\cos \theta+i \sin \theta)$, which means $\frac{1}{z}=\frac{1}{r} e^{-i \theta}=\frac{1}{r}(\cos \theta-i \sin \theta)$. We are given:

$$
2 \cos \left(\frac{\pi}{36}\right)=z+\frac{1}{z}=r[\cos \theta+i \sin \theta]+\frac{1}{r}[\cos \theta-i \sin \theta]=\cos \theta\left[r+\frac{1}{r}\right]+i \sin \theta\left[r-\frac{1}{r}\right] .
$$

The imaginary parts of this equation are equal, so $0=(\sin \theta)\left[r-\frac{1}{r}\right]$. Suppose that $\sin \theta=0$.

- If $\cos \theta=1$, then $2 \cos \frac{\pi}{36}=r+\frac{1}{r}$, so $r^{2}-\left(2 \cos \frac{\pi}{36}\right) r+1=0$. The discriminant of this quadratic equation is $4 \cos ^{2} \frac{\pi}{36}-4<0$, so r is not real - a contradiction.
- If $\cos \theta=-1$, then $2 \cos \frac{\pi}{36}=-\left[r+\frac{1}{r}\right]$. The left side of this equation is positive and the right side is negative - a contradiction.

Since $\sin \theta \neq 0, r=\frac{1}{r}$; but $r>0$, so $r=1$. Now $2 \cos \left(\frac{\pi}{36}\right)=2 \cos \theta+0 i \sin \theta$, so $\cos \left(\frac{\pi}{36}\right)=\cos \theta$. We may require $-\pi<\theta \leq \pi$, and conclude that $\theta= \pm \frac{\pi}{36}$ and $z=e^{ \pm \pi i / 36}$. Finally,

$$
\begin{aligned}
z^{2022}+\frac{1}{z^{2022}} & =e^{ \pm 2022 \pi i / 36}+e^{\mp 2022 \pi i / 36} \\
& =e^{ \pm 337 \pi i / 6}+e^{\mp 337 \pi i / 6} \\
& =\cos \left(\frac{337 \pi}{6}\right)+i \sin \left(\frac{337 \pi}{6}\right)+\cos \left(-\frac{337 \pi}{6}\right)+i \sin \left(-\frac{337 \pi}{6}\right) \\
& =2 \cos \left(\frac{337 \pi}{6}\right) \\
& =2 \cos \left(56 \pi+\frac{\pi}{6}\right) \\
& =2\left(\frac{\sqrt{3}}{2}\right)=\sqrt{3} .
\end{aligned}
$$

Source: Adapted from Problem \#9 of the 2000 American Invitational Mathematics Exam (Version 2). In: Scott A. Annin. A Gentle Introduction to the American Invitational Mathematics Exam. The Mathematical Association of America (2015), 136-137.

