

Problem of the Week #3 $_{\rm (Fall\ 2022)}$

Which is larger: 10000^{10000} , or 10001^{9999} ?

Solution:

 10000^{10000} is larger.

Proof. We know that $\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e$. Let N = 10000. Since N is large,

$$\frac{(N+1)^{N-1}}{N^N} = \frac{1}{N+1} \cdot \frac{(N+1)^N}{N^N} = \frac{1}{N+1} \cdot \left(\frac{N+1}{N}\right)^N = \frac{1}{N+1} \cdot \left(1 + \frac{1}{N}\right)^N \approx \frac{1}{N+1} \cdot e = \frac{e}{10001} < 1.$$

Therefore $(N+1)^{N-1} < N^N$; that is, $10001^{9999} < 10000^{10000}$.

Remark. This was a little sketchy, because of the " \approx " along the way. To clean up, let $f(x) = \left(1 + \frac{1}{x}\right)^x$. Using logarithmic differentiation, we can show that

$$f'(x) = f(x) \left[\ln \left(1 + \frac{1}{x} \right) - \frac{1}{x+1} \right]$$

= $f(x) \left[\ln(x+1) - \ln(x) - \frac{1}{x+1} \right]$
= $f(x) \left[\int_{x}^{x+1} \frac{1}{t} dt - \frac{1}{x+1} \right]$
= $f(x) \int_{x}^{x+1} \left(\frac{1}{t} - \frac{1}{x+1} \right) dt,$

which is positive, because f(x) > 0 when x is real and $\frac{1}{t} - \frac{1}{x+1} > 0$ when t < x+1. Since f'(x) > 0, we know f(x) is increasing, so

$$\left(1+\frac{1}{N}\right)^N = f(N) < \lim_{x \to \infty} f(x) = e,$$

which is what we needed.