Problem of the Week \#3

(Fall 2022)

Which is larger: 10000^{10000}, or $10001^{9999} ?$

Solution:

10000^{10000} is larger.
Proof. We know that $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=e$.
Let $N=10000$. Since N is large,

$$
\frac{(N+1)^{N-1}}{N^{N}}=\frac{1}{N+1} \cdot \frac{(N+1)^{N}}{N^{N}}=\frac{1}{N+1} \cdot\left(\frac{N+1}{N}\right)^{N}=\frac{1}{N+1} \cdot\left(1+\frac{1}{N}\right)^{N} \approx \frac{1}{N+1} \cdot e=\frac{e}{10001}<1 .
$$

Therefore $(N+1)^{N-1}<N^{N}$; that is, $10001^{9999}<10000^{10000}$.
Remark. This was a little sketchy, because of the " \approx " along the way. To clean up, let $f(x)=\left(1+\frac{1}{x}\right)^{x}$. Using logarithmic differentiation, we can show that

$$
\begin{aligned}
f^{\prime}(x) & =f(x)\left[\ln \left(1+\frac{1}{x}\right)-\frac{1}{x+1}\right] \\
& =f(x)\left[\ln (x+1)-\ln (x)-\frac{1}{x+1}\right] \\
& =f(x)\left[\int_{x}^{x+1} \frac{1}{t} d t-\frac{1}{x+1}\right] \\
& =f(x) \int_{x}^{x+1}\left(\frac{1}{t}-\frac{1}{x+1}\right) d t,
\end{aligned}
$$

which is positive, because $f(x)>0$ when x is real and $\frac{1}{t}-\frac{1}{x+1}>0$ when $t<x+1$.
Since $f^{\prime}(x)>0$, we know $f(x)$ is increasing, so

$$
\left(1+\frac{1}{N}\right)^{N}=f(N)<\lim _{x \rightarrow \infty} f(x)=e
$$

which is what we needed.

