
Problem of the Week #3
(Fall 2022)

Which is larger: 1000010000, or 100019999?

Solution:

1000010000 is larger.

Proof. We know that lim
x→∞
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)
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Let N = 10000. Since N is large,
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Therefore (N + 1)N−1 < NN ; that is, 100019999 < 1000010000.

Remark. This was a little sketchy, because of the “≈” along the way. To clean up, let
f(x) = (1 + 1

x
)x. Using logarithmic differentiation, we can show that
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which is positive, because f(x) > 0 when x is real and
1

t
− 1

x + 1 > 0 when t < x + 1.
Since f ′(x) > 0, we know f(x) is increasing, so
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= f(N) < lim
x→∞

f(x) = e,

which is what we needed.


