Problem of the Week \#2
(Fall 2022)

Suppose we are given n blue points and n orange points in the plane, selected so that no three of the $2 n$ points lie on a single line.
Prove that each of the blue points can be given its own orange partner in such a way that the line segments joining points to their partners do not cross.

Solution:

Proof. Given any pairing, let A and B be blue points, and let C be the orange point paired with A and D the orange point paired with B. If segment $\overline{A C}$ intersects $\overline{B D}$ at Z, then by the triangle inequality,

$$
A D+B C<A Z+Z D+B Z+Z C=A C+B D
$$

so pairing A with D and B with C would give a new pairing in which the lengths of the partner-segments add up to a lower total.
There are only finitely many possible pairings, so some pairing has the minimum total partner-segment length, and that pairing cannot have intersecting segments.

Source: Peter Winkler, "Red Points and Blue Points," Mathematical Puzzles: A Connoisseur's Collection, A.K. Peters, Ltd. (2004), pp. 45, 49.

