Problem of the Week \#10
(Fall 2021)

Let Γ be the graph of a function that is differentiable and concave down on the interval $[a, b]$, and let L be a line tangent to Γ at $x=c$.
What value of c minimizes the shaded area, which is bounded by $\Gamma, L, x=a$, and $x=b$?

Solution:

The area is minimized when $c=\frac{1}{2}(a+b)$, at the midpoint of $[a, b]$.
Proof. The area between Γ and the x-axis is constant, so it is enough to minimize the area of the trapezoid above $[a, b]$ and below L. That means we have to minimize the average height of the trapezoid, which is the height of L at $x=\frac{1}{2}(a+b)$. To accomplish this, we just have to make sure that L and Γ have the same height at $x=\frac{1}{2}(a+b)$, and to do this we must set $c=\frac{1}{2}(a+b)$.

Source: Robert Paré. "A Visual Proof of Eddy and Fritsch's Minimal Area Property." College Mathematics Journal 26:1 (January 1995), 43-44.
Cited in: Claudi Alsina and Roger B. Nelson. Charming Proofs: A Journey Into Elegant Mathematics. The Mathematical Association of America (2010), 158, 265.

