PROBLEM OF THE WEEK $\# 9$
(Fall 2021)

Let $\left\{a_{n}\right\}$ be a sequence of positive integers with

$$
\frac{a_{1}}{a_{2}}=\frac{a_{1}+a_{2}}{a_{3}+a_{4}}=\frac{a_{1}+a_{2}+a_{3}}{a_{4}+a_{5}+a_{6}}=\ldots
$$

Prove that a_{2} is divisible by a_{1}.

Solution:

Proof. Let $s_{n}=a_{1}+a_{2}+\cdots+a_{n}$, and let $C=\frac{a_{1}}{a_{2}}$. We know that for $k \geq 1$:

$$
\begin{aligned}
\frac{s_{k}}{s_{2 k}-s_{k}} & =C \\
s_{k} & =C s_{2 k}-C s_{k} \\
(C+1) s_{k} & =C s_{2 k} \\
\left(1+\frac{1}{C}\right) s_{k} & =s_{2 k}
\end{aligned}
$$

Let $q=1+\frac{1}{C}=\frac{s_{2}}{s_{1}}$, and subtract the equations $\left\{\begin{aligned} q s_{n} & =s_{2 n} \\ q s_{n-1} & =s_{2 n-2}\end{aligned}\right.$ to obtain $q a_{n}=a_{2 n-1}+a_{2 n}$. Specifically, $q a_{1}=a_{1}+a_{2}$, so $a_{2}=(q-1) a_{1}$, which means we want to show that q is an integer. Observe that q is rational, and write $q=\frac{h}{k}$ in lowest terms. This yields $h a_{n}=k\left(a_{2 n-1}+a_{2 n}\right)$, and since h is relatively prime to k, a_{n} is a multiple of k.
Now let $b_{n}=\frac{a_{n}}{k}$. Then $\left\{b_{n}\right\}$ is a new sequence of positive integers with the property that

$$
C=\frac{b_{1}}{b_{2}}=\frac{b_{1}+b_{2}}{b_{3}+b_{4}}=\frac{b_{1}+b_{2}+b_{3}}{b_{4}+b_{5}+b_{6}}=\ldots
$$

and consequently the work we've just done shows that every b_{n} is divisible by k, which means a_{n} is divisible by k^{2}. By repeating this process m times, we conclude that a_{n} is divisible by k^{m} for every $m \geq 1$. Thus $k=1$, so q is an integer.

Remark. The problem is inspired by a fact about the odd integers that Galileo pointed out:

$$
\frac{1}{3}=\frac{1+3}{5+7}=\frac{1+3+5}{7+9+11}=\ldots
$$

Source: Kenneth O. May. "Galileo sequences, a good dangling problem." The American Mathematical Monthly 79:1 (January 1972), 67-69.

