

Problem of the Week #8 $_{\rm (Fall\ 2021)}$

Prove that if t > 0, then $(\arctan t) \left(\arctan \frac{1}{t}\right) > \frac{t}{2(t^2 + 1)}$.

Solution:

It is enough to prove the inequality for $0 < t \le 1$. If we accomplish this, then for t > 1, we can let u = 1/t, so $0 \le u < 1$ and

$$(\arctan u) \left(\arctan \frac{1}{u}\right) > \frac{u}{2(u^2 + 1)}$$
$$\left(\arctan \frac{1}{t}\right) (\arctan t) > \frac{1/t}{2((1/t^2) + 1)} \cdot \frac{t^2}{t^2}$$
$$\left(\arctan t\right) \left(\arctan \frac{1}{t}\right) > \frac{t}{2(1 + t^2)}.$$

So suppose that $0 < t \le 1$, so $\frac{1}{t} > 1$. Note that $\arctan t > 0$ and $\arctan \frac{1}{t} > \frac{\pi}{4}$. Draw triangle OAB with right angle A, such that AB = t and OA = 1. By the Pythagorean theorem, $OB = \sqrt{t^2 + 1}$. Then draw an altitude from A to OB at C. Triangles BOA and AOC are similar, so $OC = \frac{1}{\sqrt{t^2+1}}$ and $AC = \frac{t}{\sqrt{t^2+1}}$. Hence triangle AOC has area $\frac{1}{2}OC \cdot AC = \frac{t}{2(t^2+1)}$. Now draw a circle through A with center O. The sector of this circle intercepted by $\angle BOA$ has area $\frac{\arctan t}{2\pi} \cdot \pi r^2 = \frac{1}{2} \arctan t$, and contains triangle AOC. Therefore:

$$\left(\arctan\frac{1}{t}\right)\left(\arctan t\right) \ge \frac{\pi}{4}\arctan t > \frac{1}{2}\arctan t > \frac{t}{2(t^2+1)}$$

Source: Bracken, Paul. "Problem 4467," Crux Mathematicorum 45:7 (Sept. 2019), 414.