(Fall 2021)

Aundra and her husband Dennis go to a get-together with four other couples. Each person there shakes hands with everyone he or she doesn't already know (and no one else). Later, Dennis surveys the nine other guests (besides himself) and learns that each of them shook hands with a different number of people.
How many people did Aundra shake hands with?

Solution:

Aundra shook hands with exactly four people.
Proof. Each guest knows their partner, so can shake hands with at most 8 people. The nine non-Dennis guests shook hands with different numbers of people, so their answers must have been the nine integers from 0 through 8 . Name the non-Dennis guests $P_{0}, P_{1}, \ldots, P_{8}$ so that each P_{i} shook hands with exactly i people.
Now P_{8} shook hands with everyone but their partner, and P_{0} didn't shake hands with P_{8}, so P_{0} and P_{8} are partners.
Then P_{7} shook hands with everyone but their partner and P_{0}, and P_{1} only shook hands with P_{8}. Since P_{1} didn't shake hands with P_{7}, and P_{1} isn't P_{0}, we know that P_{1} and P_{7} are partners.
This means that P_{6} shook hands with everyone but their partner, P_{0}, and P_{1}, and P_{2} only shook hands with P_{8} and P_{7}. Since P_{2} didn't shake hands with P_{6}, and P_{2} isn't P_{0} or P_{1}, we see that P_{2} and P_{6} are partners.
Finally, P_{5} shook hands with everyone but their partner, P_{0}, P_{1}, and P_{2}, while P_{3} only shook hands with P_{8}, P_{7}, and P_{6}. Since P_{3} didn't shake hands with P_{5}, and P_{3} isn't P_{0}, P_{1}, or P_{2}, we conclude that P_{3} and P_{5} are partners.
But Aundra's partner is Dennis, who isn't P_{i} for any i. By elimination, Aundra is P_{4}.
Remark. To summarize, we showed that P_{i} shook hands with P_{j} if and only if $i+j \geq 9$, and that P_{i} and P_{j} are partners if and only if $i+j=8$ (and $i \neq j$). By counting, we can learn that Dennis and Aundra shook hands with exactly the same people.

Source: Winkler, Peter. "Handshakes at a Party." Mathematical Puzzles: A Connoisseur's Collection. Wellesley: A K Peters (2004), 22, 26.

