Problem of the Week \#3
(Fall 2021)

Find all real-valued functions F with domain \mathbb{R} for which

$$
F(u)-F(v) \leq(u-v)^{2}
$$

for all real numbers u and v.

Solution:

The function F has the desired property if and only if F is constant.
Proof. If $F(x)=C$ for all x, then for all u and v,

$$
F(u)-F(v)=C-C=0 \leq(u-v)^{2} .
$$

Conversely, suppose that F has the desired property. Let a be a real number.
For every real x, we are given both $F(x)-F(a) \leq(x-a)^{2}$ and $F(a)-F(x) \leq(a-x)^{2}$, so:

$$
\begin{aligned}
& |F(x)-F(a)| \leq(x-a)^{2} \\
& |F(x)-F(a)| \leq|x-a|^{2} \\
& \frac{|F(x)-F(a)|}{|x-a|} \leq|x-a| \\
& \left|\frac{F(x)-F(a)}{x-a}\right| \leq|x-a|
\end{aligned}
$$

That is, $-|x-a| \leq \frac{F(x)-F(a)}{x-a} \leq|x-a|$, and by the squeeze theorem, $\lim _{x \rightarrow a} \frac{F(x)-F(a)}{x-a}=0$. Thus $F^{\prime}(a)=0$. Since this is true for all real a, we conclude that F is constant.

Source: Khovanova, Tanya, and Alexey Radul. "Killer Problems." The American Mathematical Monthly 119:10 (December 2012), 815-823.

