Problem of the Week \#2
(Fall 2021)

Find the sum of the numbers of the form $\frac{m}{n}$, where m and n are relatively prime positive divisors of 1000 .

Solution:

If m and n are relatively prime positive divisors of 1000 , then m and n have the form $2^{i} 5^{j}$, where $0 \leq i, j \leq 3$. Therefore $\frac{m}{n}=2^{a} 5^{b}$, where $-3 \leq a, b \leq 3$, and the desired sum equals a product of two finite geometric series:

$$
\begin{aligned}
& 2^{-3} 5^{-3}+2^{-3} 5^{-2}+\cdots+2^{3} 5^{3} \\
= & \left(2^{-3}+\cdots+2^{2}+2^{3}\right)\left(5^{-3}+\cdots+5^{2}+5^{3}\right) \\
= & \frac{2^{-3}\left(1-2^{7}\right)}{1-2} \cdot \frac{5^{-3}\left(1-5^{7}\right)}{1-5} \\
= & \frac{127}{8} \cdot \frac{19531}{125} \\
= & \frac{2480437}{1000} \\
= & 2480.437 .
\end{aligned}
$$

Source: Problem \#11 of the 2000 American Invitational Mathematics Exam. In: Annin, Scott A., A Gentle Introduction to the American Invitational Mathematics Exam. Washington: The Mathematical Association of America (2015), 281.

