Problem of the Week \#1

(Fall 2021)

Given that a, b, c, and d are positive real numbers with $a \geq b \geq c \geq d>0$, show that

$$
(a+2 b+3 c+4 d)\left(a^{2}+b^{2}+c^{2}+d^{2}\right)<(a+b+c+d)^{3} .
$$

Solution:

Define: $\left\{\begin{aligned} r & =a-b, \\ s & =b-c, \\ t & =c-d, \\ u & =d .\end{aligned}\right.$
By hypothesis, r, s, t, and u are non-negative, with $u>0$.
We can check that: $\left\{\begin{aligned} u & =d, \\ t+u & =c, \\ s+t+u & =b, \\ r+s+t+u & =a,\end{aligned}\right.$
and we can do a lot of manual labor or a bit of electronic computation to show that

$$
\begin{aligned}
& (a+b+c+d)^{3}-(a+2 b+3 c+4 d)\left(a^{2}+b^{2}+c^{2}+d^{2}\right) \\
= & (r+2 s+3 t+4 u)^{3}-(r+3 s+6 t+10 u)\left[(r+s+t+u)^{2}+(s+t+u)^{2}+(t+u)^{2}+u^{2}\right] \\
= & r^{2} s+r^{2} t+4 r s^{2}+14 r s t+18 r s u+12 r t^{2}+34 r t u+24 r u^{2}+2 s^{3}+12 s^{2} t+16 s^{2} u+21 s t^{2} \\
& \quad+62 s t u+44 s u^{2}+9 t^{3}+42 t^{2} u+60 t u^{2}+24 u^{3} .
\end{aligned}
$$

That quantity is positive, as desired, since all coefficients are positive, all variables are nonnegative, and the final term $24 u^{3}$ is strictly positive.

Source: Suggested by Problem 2 of the 2020 IMO, proposed by Stijn Cambie, Netherlands. Solution by Luke Robitaille, 10th grade, Robitaille Homeschool, Euless, TX. In: Bajnok, Béla, and Evan Chen, "Report on the 61st Annual International Mathematical Olympiad," Mathematics Magazine 94:3 (June 2021), 215-224.

