Problem of the Week \#10

(Fall 2020)

Let A, B, and C be three points on a circle with center O. Let T be the midpoint of $B C$, and let W be the foot of the altitude from A.
Suppose that the three altitudes intersect at P and $P O T W$ is a rectangle with sides $O P=11$ and $O T=5$. Find the length of $B C$.

Solution:

$B C=28$.
Proof. Let G be the centroid of $\triangle A B C$. Since O and P are the circumcenter and orthocenter of $\triangle A B C$ respectively, the points P, G, and O are on a single line (the triangle's "Euler line" $)$. We know that G lies two-thirds of the way from A to T. By the similarity of $\triangle A P G$ and $\triangle A W T, P$ lies two-thirds of the way from A to W. Therefore $A P=10$.
Now the Pythagorean theorem tells us that $A O=\sqrt{10^{2}+11^{2}}=\sqrt{221} . A O$ and $O C$ are radii of the circle, so $O C=\sqrt{221}$. We can use the Pythagorean theorem again to find that $C T=\sqrt{221-25}=14$, and so $B C=28$.

Source: Problem A-1 of the $58^{\text {th }}$ William Lowell Putnam Mathematical Competition (1997).

