

PROBLEM OF THE WEEK #9 (Fall 2020)

Find all right triangles that have a side of length 10 and two other sides with integer lengths.

Solution:

The side lengths of such a triangle are either $\{6, 8, 10\}$ or $\{10, 24, 26\}$.

Proof. Let T be a right triangle with integer sides, including a side of length 10, and let d be the greatest common divisor of the side lengths. Then $d \mid 10$, so $d \in \{1, 2, 5, 10\}$.

First, we consider the case d = 1. Then T is called a *primitive* triangle. Euclid showed that in this case there are relatively prime positive integers s and t, one odd and the other even, for which the side lengths are $a = s^2 - t^2$, b = 2st, and $c = s^2 + t^2$. Note that b is a multiple of 4, while a and c are odd. Thus no side of a primitive triangle can have length 10.

If $d \in \{5, 10\}$, then scaling T down by a factor of d produces a primitive triangle with a side of length 1 or 2. But again we have $a = s^2 - t^2$, b = 2st, and $c = s^2 + t^2$, so $a \ge 3$, $4 \mid b$, and $c \ge 5$ — a contradiction.

Finally, if d = 2, then scaling T down by a factor of d produces a primitive triangle with a side of length 5. Since $4 \mid b$, we know $b \neq 5$. If $5 = a = s^2 - t^2 = (s+t)(s-t)$, then s+t=5 and s-t=1, so (s,t) = (3,2), (a,b,c) = (5,12,13), and T has side lengths $\{10,24,26\}$. If $5 = c = s^2 + t^2 \ge 2^2 + 1^2 = 5$, we have (s,t) = (2,1), so (a,b,c) = (3,4,5), and T has side lengths $\{6,8,10\}$.

Source: John J. Watkins, "T² TEN T²: Ten Terribly Tempting Elementary Number Theory Tidbits," in *G4G10 Exchange Book* (https://www.gathering4gardner.org/g4g10gift/G4G10-Book-Volume2-ForWeb.pdf).