PROBLEM OF THE WEEK \#9
(Fall 2020)

Find all right triangles that have a side of length 10 and two other sides with integer lengths.

Solution:

The side lengths of such a triangle are either $\{6,8,10\}$ or $\{10,24,26\}$.

Proof. Let T be a right triangle with integer sides, including a side of length 10 , and let d be the greatest common divisor of the side lengths. Then $d \mid 10$, so $d \in\{1,2,5,10\}$.
First, we consider the case $d=1$. Then T is called a primitive triangle. Euclid showed that in this case there are relatively prime positive integers s and t, one odd and the other even, for which the side lengths are $a=s^{2}-t^{2}, b=2 s t$, and $c=s^{2}+t^{2}$. Note that b is a multiple of 4 , while a and c are odd. Thus no side of a primitive triangle can have length 10 .
If $d \in\{5,10\}$, then scaling T down by a factor of d produces a primitive triangle with a side of length 1 or 2 . But again we have $a=s^{2}-t^{2}, b=2 s t$, and $c=s^{2}+t^{2}$, so $a \geq 3,4 \mid b$, and $c \geq 5$ - a contradiction.
Finally, if $d=2$, then scaling T down by a factor of d produces a primitive triangle with a side of length 5 . Since $4 \mid b$, we know $b \neq 5$. If $5=a=s^{2}-t^{2}=(s+t)(s-t)$, then $s+t=5$ and $s-t=1$, so $(s, t)=(3,2),(a, b, c)=(5,12,13)$, and T has side lengths $\{10,24,26\}$. If $5=c=s^{2}+t^{2} \geq 2^{2}+1^{2}=5$, we have $(s, t)=(2,1)$, so $(a, b, c)=(3,4,5)$, and T has side lengths $\{6,8,10\}$.

Source: John J. Watkins, "T² TEN T": Ten Terribly Tempting Elementary Number Theory Tidbits," in G4G10 Exchange Book (https://www.gathering4gardner.org/g4g10gift/ G4G10-Book-Volume2-ForWeb.pdf).

