(Fall 2020)

Let $\left\{a_{1}, a_{2}, \ldots\right\}$ be a strictly increasing sequence of positive integers: if $m>n$, then $a_{m}>a_{n}$. Assuming that $a_{\left(a_{n}\right)}=3 n$ for every positive integer n, find a_{1000}.

Solution:

$a_{1000}=1729 . *$
Proof. I claim that when k is a non-negative integer, we have $a_{3^{k}}=2 \cdot 3^{k}$ and $a_{2 \cdot 3^{k}}=3^{k+1}$. The proof is by induction on k. Suppose for the sake of contradiction that $a_{1}=1$. Then $a_{1}=a_{a_{1}}=3$, which is impossible. So $a_{1} \geq 2$. Hence $3=a_{a_{1}} \geq a_{2}$. On the other hand, $a_{2}>a_{1} \geq 2$, so because a_{2} is an integer, $a_{2} \geq 3$. The only possibility is $a_{2}=3$. This means $a_{a_{1}}=3=a_{2}$, and so $a_{1}=2$. This proves the claim for $k=0$.
Now assume for induction that $a_{3^{k}}=2 \cdot 3^{k}$ and $a_{2 \cdot 3^{k}}=3^{k+1}$ for some $k \geq 0$. Hence

$$
a_{3^{k+1}}=a_{a_{2 \cdot 3} k}=3\left(2 \cdot 3^{k}\right)=2 \cdot 3^{k+1}
$$

and

$$
a_{2 \cdot 3^{k+1}}=a_{a_{3^{k+1}}}=3\left(3^{k+1}\right)=3^{(k+1)+1},
$$

completing the induction.
Finally, observe that for any $n, a_{n+1}>a_{n}$, and since both terms are integers, $a_{n+1}-a_{n} \geq 1$. Adding several of these equations yields a telescoping sum: $a_{n+y}-a_{n} \geq y$. By substitution, if $m>n$, then $a_{m}-a_{n} \geq m-n$. In particular, if $3^{k}<t<2 \cdot 3^{k}$, then $\left\{\begin{aligned} a_{t}-a_{3^{k}} & \geq t-3^{k}, \\ a_{2 \cdot 3^{k}}-a_{t} & \geq 2 \cdot 3^{k}-t .\end{aligned}\right.$ We can solve both equations for a_{t} to obtain:

$$
\left\{\begin{array}{l}
a_{t} \geq t-3^{k}+a_{3^{k}}=t-3^{k}+2 \cdot 3^{k}=t+3^{k}, \\
a_{t} \leq t-2 \cdot 3^{k}+a_{2 \cdot 3^{k}}=t-2 \cdot 3^{k}+3^{k+1}=t+3^{k} .
\end{array}\right.
$$

Since 1000 is between $3^{6}=729$ and $2 \cdot 3^{6}=1458$, we obtain $a_{1000}=1000+3^{6}=1729$.
Remark. It's not relevant to our specific question, but we can find the remaining terms as well. If $2 \cdot 3^{k}<t<3^{k+1}$, then let $s=t-3^{k}$. Since $3^{k}<s<2 \cdot 3^{k}$, we have $a_{s}=s+3^{k}=t$, and so $a_{t}=a_{a_{s}}=3 s=3\left(t-3^{k}\right)$. For instance, since 2020 is between $2 \cdot 3^{6}=1458$ and $3^{7}=2187$, we get $a_{2020}=3(2020-729)=3873$.

Source: Velleman, Daniel J., and Stan Wagon. Bicycle or Unicycle? Providence: MAA Press (2020), 17.

[^0]
[^0]: *This is a very interesting number, because it is the smallest integer that can be expressed as a sum of positive cubes in more than one way: $12^{3}+1^{3}=1728+1$ and $10^{3}+9^{3}=1000+729$.

