

## PROBLEM OF THE WEEK #8(Fall 2020)

Let  $\{a_1, a_2, \dots\}$  be a strictly increasing sequence of positive integers: if m > n, then  $a_m > a_n$ . Assuming that  $a_{(a_n)} = 3n$  for every positive integer n, find  $a_{1000}$ .

## Solution:

 $a_{1000} = 1729.*$ 

*Proof.* I claim that when k is a non-negative integer, we have  $a_{3^k} = 2 \cdot 3^k$  and  $a_{2\cdot 3^k} = 3^{k+1}$ . The proof is by induction on k. Suppose for the sake of contradiction that  $a_1 = 1$ . Then  $a_1 = a_{a_1} = 3$ , which is impossible. So  $a_1 \ge 2$ . Hence  $3 = a_{a_1} \ge a_2$ . On the other hand,  $a_2 > a_1 \ge 2$ , so because  $a_2$  is an integer,  $a_2 \ge 3$ . The only possibility is  $a_2 = 3$ . This means  $a_{a_1} = 3 = a_2$ , and so  $a_1 = 2$ . This proves the claim for k = 0. Now a ce

assume for induction that 
$$a_{3^k} = 2 \cdot 3^k$$
 and  $a_{2 \cdot 3^k} = 3^{k+1}$  for some  $k \ge 0$ . Hence

$$a_{3^{k+1}} = a_{a_{2,3^k}} = 3(2 \cdot 3^k) = 2 \cdot 3^{k+1}$$

and

$$a_{2\cdot 3^{k+1}} = a_{a_{3^{k+1}}} = 3(3^{k+1}) = 3^{(k+1)+1},$$

completing the induction.

Finally, observe that for any n,  $a_{n+1} > a_n$ , and since both terms are integers,  $a_{n+1} - a_n \ge 1$ . Adding several of these equations yields a telescoping sum:  $a_{n+y} - a_n \ge y$ . By substitution, if m > n, then  $a_m - a_n \ge m - n$ . In particular, if  $3^k < t < 2 \cdot 3^k$ , then  $\begin{cases} a_t - a_{3^k} \ge t - 3^k, \\ a_{2\cdot 3^k} - a_t \ge 2 \cdot 3^k - t. \end{cases}$ We can solve both equations for  $a_t$  to obtain:

$$\begin{cases} a_t \geq t - 3^k + a_{3^k} = t - 3^k + 2 \cdot 3^k = t + 3^k, \\ a_t \leq t - 2 \cdot 3^k + a_{2 \cdot 3^k} = t - 2 \cdot 3^k + 3^{k+1} = t + 3^k. \end{cases}$$

Since 1000 is between  $3^6 = 729$  and  $2 \cdot 3^6 = 1458$ , we obtain  $a_{1000} = 1000 + 3^6 = 1729$ . 

*Remark.* It's not relevant to our specific question, but we can find the remaining terms as well. If  $2 \cdot 3^k < t < 3^{k+1}$ , then let  $s = t - 3^k$ . Since  $3^k < s < 2 \cdot 3^k$ , we have  $a_s = s + 3^k = t$ , and so  $a_t = a_{a_s} = 3s = 3(t - 3^k)$ . For instance, since 2020 is between  $2 \cdot 3^6 = 1458$  and  $3^7 = 2187$ , we get  $a_{2020} = 3(2020 - 729) = 3873$ .

Source: Velleman, Daniel J., and Stan Wagon. Bicycle or Unicycle? Providence: MAA Press (2020), 17.

<sup>\*</sup>This is a very interesting number, because it is the smallest integer that can be expressed as a sum of positive cubes in more than one way:  $12^3 + 1^3 = 1728 + 1$  and  $10^3 + 9^3 = 1000 + 729$ .