Problem of the Week \#6
(Fall 2020)

Given a real number x, find all n-tuples $\left(y_{1}, \ldots, y_{n}\right)$ that solve the real equation

$$
\sum_{k=1}^{n} \sqrt{x-y_{k}}=n+\sqrt{(1-x) n+\sum_{k=1}^{n} y_{k}}
$$

Solution:

The equation holds only when $y_{1}=\cdots=y_{n}=x-1$.
Proof. Let $z_{k}=\sqrt{x-y_{k}}$, which is assumed to be real. So $y_{k}=x-z_{k}^{2}$, and in that notation, the given equation is

$$
\begin{aligned}
\sum_{k=1}^{n} z_{k} & =n+\sqrt{(1-x) n+\sum_{k=1}^{n}\left(x-z_{k}^{2}\right)} \\
-n+\sum_{k=1}^{n} z_{k} & =\sqrt{(1-x) n+n x-\sum_{k=1}^{n} z_{k}^{2}} \\
-n+\sum_{k=1}^{n} z_{k} & =\sqrt{n-\sum_{k=1}^{n} z_{k}^{2}}
\end{aligned}
$$

The left side of this equation is real, so the right side is real, and therefore non-negative. That means the left side is also non-negative. Hence $\sum_{k=1}^{n} z_{k} \geq n$ and $\sum_{k=1}^{n} z_{k}^{2} \leq n$. But then:

$$
\begin{aligned}
\left(\sum_{k=1}^{n} z_{k}^{2}\right)-2\left(\sum_{k=1}^{n} z_{k}\right) & \leq n-2 n \\
\sum_{k=1}^{n}\left(z_{k}^{2}-2 z_{k}\right) & \leq-n \\
\sum_{k=1}^{n}\left(z_{k}^{2}-2 z_{k}+1\right) & \leq 0 \\
\sum_{k=1}^{n}\left(z_{k}-1\right)^{2} & \leq 0
\end{aligned}
$$

It follows that each $z_{k}=1$, and therefore each $y_{k}=x-1$.

Source: Sokolovsky, Yevgeniy (solution by Missouri State University problem solving group). "Additive Roots." Math Horizons 27:4 (April 2020), 31.

