Problem of the Week \#5
(Fall 2020)

Find a triangle with area 168, whose side lengths are integers, with all three vertices lying on a circle whose radius is a perfect square.

## Solution:

A triangle with sides of length 14, 30, and 40 has area 168 and circumradius 25.
Let $a \leq b \leq c$ be the side lengths of a triangle $T$, with opposite angles $A, B$, and $C$ as usual. By the law of sines, there is some $q$ with $a=q \sin A, b=q \sin B$, and $c=q \sin C$. The area of $T$ is $\frac{1}{2} a b \sin C=168$, so $a b c=336 q$. Then the circumradius of $T$ is $\frac{a b c}{4(168)}=\frac{q}{2}$, so there is some integer $k$ with $q=2 k^{2}$. Since $\sin C \leq 1$, we know that $c \leq q \leq 2 k^{2}$, and also that $2 \cdot 168 \cdot q=a b c \leq q^{3}$, which means $q \geq \sqrt{336}$. Therefore $k^{2} \geq \sqrt{84}>9$, so $k>3$.
By Heron's formula,

$$
168=\sqrt{\frac{(a+b+c)(a+b-c)(a-b+c)(-a+b+c)}{16}} .
$$

We can rule out any ( $a, b, c$ ) with exactly one odd entry, since then the numerator in Heron's formula, $(a+b+c)(a+b-c)(a-b+c)(-a+b+c)$, would be odd.
There are no solutions with $k=4$, which would yield $a b c=N k^{2}=2^{9} \cdot 3 \cdot 7=10752$. Hence $c \mid 10752$ and $c \geq \sqrt[3]{a b c}=\sqrt[3]{10752}>22$, as well as $c \leq 2 k^{2}=32$. The remaining possibilities are shown in the table at right, but none of them has area $168=\sqrt{28224}$.

However, with $k=5, a b c=N k^{2}=2^{5} \cdot 3 \cdot 5^{2} \cdot 7=16800$. We know that $c \mid 16800$, that $c \geq \sqrt[3]{a b c}=\sqrt[3]{16800}>25$, and that $c \leq 2 k^{2}=50$. The triangle inequality implies $a+b>c$. The remaining possibilities are shown in the table at right.

We have found $(a, b, c)=(14,30,40)$, with area 168 and circumradius 25 . This triangle can be realized with its vertices at $A=(0,0), B=(40,0)$, and $C=(28.8,8.4)$; the circumcenter is $(20,-15)$. This is the smallest triangle, by area, with integer side lengths, integer area, and a circumradius that is a perfect square.

| $a$ | $b$ | $c$ | area |
| :---: | :---: | :---: | :---: |
| 16 | 24 | 28 | $\sqrt{36720}$ |
| 12 | 28 | 32 | $\sqrt{27648}$ |
| 14 | 24 | 32 | $\sqrt{24255}$ |


| $a$ | $b$ | $c$ | area |
| :---: | :---: | :---: | :---: |
| 20 | 28 | 30 | $\sqrt{73359}$ |
| 21 | 25 | 32 | $\sqrt{68796}$ |
| 15 | 32 | 35 | $\sqrt{57564}$ |
| 14 | 30 | 40 | $\sqrt{28224}$ |
| 10 | 40 | 42 | $\sqrt{39744}$ |



