Problem of the Week \#4

(Fall 2020)

Evaluate $\int_{0}^{\infty}\left(x-\frac{x^{3}}{2}+\frac{x^{5}}{2 \cdot 4}-\frac{x^{7}}{2 \cdot 4 \cdot 6}+\ldots\right)\left(1+\frac{x^{2}}{2^{2}}+\frac{x^{4}}{2^{2} \cdot 4^{2}}+\frac{x^{6}}{2^{2} \cdot 4^{2} \cdot 6^{2}}+\ldots\right) d x$.

Solution:

First, $e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}$, so $x e^{-x^{2} / 2}=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k+1}}{2^{k} \cdot k!}=x-\frac{x^{3}}{2}+\frac{x^{5}}{2 \cdot 4}-\frac{x^{7}}{2 \cdot 4 \cdot 6}+\ldots$.
Therefore, our integral is $\int_{0}^{\infty} x e^{-x^{2} / 2}\left[\sum_{k=0}^{\infty} \frac{x^{2 k}}{\left(2^{k} \cdot k!\right)^{2}}\right] d x=\sum_{k=0}^{\infty} \frac{1}{\left(2^{k} \cdot k!\right)^{2}}\left[\int_{0}^{\infty} x^{2 k+1} e^{-x^{2} / 2} d x\right]$.
I claim that $\int_{0}^{\infty} x^{2 k+1} e^{-x^{2} / 2} d x=2^{k} \cdot k$!. The proof is by induction on k. Taking $u=-x^{2} / 2$,

$$
\int_{0}^{\infty} x e^{-x^{2} / 2} d x=\lim _{a \rightarrow \infty} \int_{0}^{a} x e^{-x^{2} / 2} d x=\lim _{a \rightarrow \infty} \int_{0}^{-a^{2} / 2}-e^{u} d u=\lim _{a \rightarrow \infty} 1-e^{-a^{2} / 2}=1=2^{0} \cdot 0!
$$

so the claim holds when $k=0$. Suppose now that $m \geq 0$ and $\int_{0}^{\infty} x^{2 m+1} e^{-x^{2} / 2} d x=2^{m} \cdot m$!. Apply integration by parts with $u=x^{2 m+2}$ and $v=-e^{-x^{2} / 2}$ to obtain

$$
\begin{aligned}
\int_{0}^{\infty} x^{2 m+3} e^{-x^{2} / 2} d x & =\lim _{a \rightarrow \infty}-\left.x^{2 m+2} e^{-x^{2} / 2}\right|_{0} ^{a}+\int_{0}^{a}(2 m+2) x^{2 m+1} e^{-x^{2} / 2} d x \\
& =\lim _{a \rightarrow \infty}-a^{2 m+2} e^{-a^{2} / 2}+(2 m+2)\left(2^{m} \cdot m!\right) \\
& =2^{m+1} \cdot(m+1)!
\end{aligned}
$$

completing the induction. Thus our integral equals

$$
\sum_{k=0}^{\infty} \frac{1}{\left(2^{k} \cdot k!\right)^{2}}\left[2^{k} \cdot k!\right]=\sum_{k=0}^{\infty} \frac{1}{2^{k} \cdot k!}=\sum_{k=0}^{\infty} \frac{(1 / 2)^{k}}{k!}=\sqrt{e} .
$$

Source: Problem A-3 of the $58^{\text {th }}$ William Lowell Putnam Mathematical Competition (1997).

