Problem of the Week \#1
(Fall 2020)

Find an integer $n$ for which the first four digits of $n^{100000}$ are all distinct.

## Solution:

There are many, many solutions, but it's probably easiest to think of $n=100001$.
Proof. This solution is based on the fact that $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e$.

$$
100001^{100000}=\left(\frac{100001}{100000}\right)^{100000}\left(100000^{100000}\right)=\left(1.00001^{100000}\right)\left(10^{500000}\right)
$$

which has the same significant digits as $1.00001^{100000}=2.718268 \ldots$.
So the first four significant digits of $100001^{100000}$ are 2718: four distinct digits.
Source: Stanley, Richard P. Combinatorial Problem Solving, American Mathematical Society (2020), 132.

