PROBLEM OF THE WEEK \#10

(Fall 2019)

Given a triangle T with angle measures $50^{\circ}, 60^{\circ}$, and 70°, what are the angle measures of the triangle whose vertices are the feet of the altitudes of T ?

Solution:

The angle measures are $40^{\circ}, 60^{\circ}$, and 80°.

Proof. Suppose $\triangle A B C$ has $\angle A=50^{\circ}, \angle B=60^{\circ}$, and $\angle C=70^{\circ}$. Let A^{\prime} (resp. B^{\prime}, C^{\prime}) be the foot of the altitude from A (resp. B, C), as shown in the figure. It is easy to use the triangles with right angles at A^{\prime}, B^{\prime}, and C^{\prime} to find the measures of all angles with vertices at A, B, and C.
Draw a circle Γ with diameter $A C$. Because $\angle A A^{\prime} C$ and $\angle A C^{\prime} C$ are right angles that intercept the diameter of Γ, the points A^{\prime} and C^{\prime} lie on Γ. Now $\angle A^{\prime} C^{\prime} C=\angle A^{\prime} A C=20^{\circ}$, because they intercept the same arc of Γ, and likewise $\angle A A^{\prime} C^{\prime}=\angle A C C^{\prime}=40^{\circ}$.
Drawing circles on the other two sides of $\triangle A B C$ and using the same argument, we get:

- $\angle A A^{\prime} B^{\prime}=\angle A B B^{\prime}=40^{\circ}$,
- $\angle B B^{\prime} A^{\prime}=\angle B A A^{\prime}=30^{\circ}$,
- $\angle B B^{\prime} C^{\prime}=\angle B C C^{\prime}=30^{\circ}$,
- $\angle C C^{\prime} B^{\prime}=\angle C B B^{\prime}=20^{\circ}$.

Thus the angle measures of $\triangle A^{\prime} B^{\prime} C^{\prime}$ are $\angle A^{\prime}=40^{\circ}+40^{\circ}=80^{\circ}, \angle B^{\prime}=30^{\circ}+30^{\circ}=60^{\circ}$, and $\angle C^{\prime}=20^{\circ}+20^{\circ}=40^{\circ}$.

Source: Suggested by MAA American Mathematics Competitions, "Friday's Problem of the Day," MathFest 2019.

