Problem of the Week \#9
(Fall 2019)

The points (x, y, z, w) in four-dimensional space such that $-1 \leq x, y, z, w \leq 1$ form a hypercube H. A two-dimensional projection of H is shown below.
The points in H with $x=1$ comprise a facet of H. H has a total of eight facets; each is made up of the points in H with a certain coordinate equal either to -1 or to 1 . Each facet of H is a cube with eight vertices.
Arrange the integers $1,2,3, \ldots, 16$ at the vertices of H so that:

- each integer is used exactly once, and
- the integers at the vertices of each facet sum to 68 .

Solution:

Many solutions are possible; here is one.

Source: "Cube Addition." More Puzzlegrams: A colorful, beguiling collection of 148 classic puzzles designed by Pentagram. New York: Fireside (1994), 27.

