Problem of the Week \#9

(Fall 2019)

The points (x, y, z, w) in four-dimensional space such that $-1 \leq x, y, z, w \leq 1$ form a hypercube H. A two-dimensional projection of H is shown below.
The points in H with $x=1$ comprise a facet of H. H has a total of eight facets; each is made up of the points in H with a certain coordinate equal either to -1 or to 1 . Each facet of H is a cube with eight vertices.
Arrange the integers $1,2,3, \ldots, 16$ at the vertices of H so that:

- each integer is used exactly once, and
- the integers at the vertices of each facet sum to 68 .

[Please fully explain your answer.]
Solutions should be submitted to Cinda Furry, in Gardner Hall 435, by 4:00 P.M. on Wednesday, November 20, 2019.

Every week, the best solution submitted earns a $\$ 10$ Platteville gift certificate; the top scorer each semester also wins a cash award. Good luck!
You can always see the Problem of the Week (and complete rules) online at:

```
http://uwpmath.weebly.com/
```

