Problem of the Week \#8
(Fall 2019)

Find all positive integers b for which $2^{b}-1$ is a divisor of $2^{2019}-1$.

Solution:

The solutions are the positive divisors of 2019: specifically, $b \in\{1,3,673,2019\}$.
Proof. We will show, more generally, that $2^{b}-1$ divides $2^{a}-1$ exactly when b divides a. Let q and r be integers for which $a=q b+r$, with $0 \leq r<b$. [That is, when you divide a by b, the quotient is q and the remainder is r.] Let $x=2^{b}$, so $x^{q}=\left(2^{b}\right)^{q}=2^{q b}$. Then

$$
2^{q b}-1=x^{q}-1=(x-1)\left(x^{q-1}+x^{q-2}+\cdots+x+1\right)=\left(2^{b}-1\right)\left(2^{b(q-1)}+2^{b(q-2)}+\cdots+2^{b}+1\right) .
$$

Multiply both sides of this equation by 2^{r} :

$$
\begin{aligned}
2^{q b+r}-2^{r} & =\left(2^{b}-1\right)\left(2^{b(q-1)+r}+2^{b(q-2)+r}+\cdots+2^{b+r}+2^{r}\right) \\
2^{q b+r}-2^{r}+2^{r}-1 & =\left(2^{b}-1\right)\left(2^{b(q-1)+r}+2^{b(q-2)+r}+\cdots+2^{b+r}+2^{r}\right)+2^{r}-1 \\
2^{a}-1 & =\left(2^{b}-1\right)\left(2^{b(q-1)+r}+2^{b(q-2)+r}+\cdots+2^{b+r}+2^{r}\right)+\left(2^{r}-1\right)
\end{aligned}
$$

Now, because $0 \leq r<b$, we know $1 \leq 2^{r}<2^{b}$, so $0 \leq 2^{r}-1<2^{b}-1$. Thus $2^{r}-1$ is the remainder when we divide $2^{a}-1$ by $2^{b}-1$. So $2^{b}-1$ is a divisor of $2^{a}-1$ exactly when $2^{r}-1=0$, which happens only when $2^{r}=1$ - but this means that $r=0$ and therefore a is divisible by b.

Source: Suggested by Problem B3 of the Seventy-Ninth William Lowell Putnam Mathematical Competition (2018). A solution by Fiona Bradley (Northwestern University) appears in American Mathematical Monthly 126:8 (October 2019), p. 684.

