

PROBLEM OF THE WEEK #8 (Fall 2019)

Find all positive integers b for which $2^{b} - 1$ is a divisor of $2^{2019} - 1$.

Solution:

The solutions are the positive divisors of 2019: specifically, $b \in \{1, 3, 673, 2019\}$.

Proof. We will show, more generally, that $2^{b} - 1$ divides $2^{a} - 1$ exactly when b divides a. Let q and r be integers for which a = qb + r, with $0 \le r < b$. [That is, when you divide a by b, the quotient is q and the remainder is r.] Let $x = 2^{b}$, so $x^{q} = (2^{b})^{q} = 2^{qb}$. Then

$$2^{qb} - 1 = x^{q} - 1 = (x - 1)(x^{q-1} + x^{q-2} + \dots + x + 1) = (2^{b} - 1)(2^{b(q-1)} + 2^{b(q-2)} + \dots + 2^{b} + 1).$$

Multiply both sides of this equation by 2^r :

$$2^{qb+r} - 2^r = (2^b - 1)(2^{b(q-1)+r} + 2^{b(q-2)+r} + \dots + 2^{b+r} + 2^r)$$

$$2^{qb+r} - 2^r + 2^r - 1 = (2^b - 1)(2^{b(q-1)+r} + 2^{b(q-2)+r} + \dots + 2^{b+r} + 2^r) + 2^r - 1$$

$$2^a - 1 = (2^b - 1)(2^{b(q-1)+r} + 2^{b(q-2)+r} + \dots + 2^{b+r} + 2^r) + (2^r - 1)$$

Now, because $0 \le r < b$, we know $1 \le 2^r < 2^b$, so $0 \le 2^r - 1 < 2^b - 1$. Thus $2^r - 1$ is the remainder when we divide $2^a - 1$ by $2^b - 1$. So $2^b - 1$ is a divisor of $2^a - 1$ exactly when $2^r - 1 = 0$, which happens only when $2^r = 1$ — but this means that r = 0 and therefore a is divisible by b. \Box

Source: Suggested by Problem B3 of the Seventy-Ninth William Lowell Putnam Mathematical Competition (2018). A solution by Fiona Bradley (Northwestern University) appears in *American Mathematical Monthly* **126**:8 (October 2019), p. 684.