Problem of the Week \#6
(Fall 2019)

Let a, b, and c be the lengths of the sides of a triangle. Suppose that

$$
a^{2}+b^{2}+c^{2}=a b+b c+c a .
$$

Prove that the triangle is equilateral.

Solution:

$$
\begin{aligned}
a^{2}+b^{2}+c^{2} & =a b+b c+c a \\
2 a^{2}+2 b^{2}+2 c^{2} & =2 a b+2 b c+2 c a \\
a^{2}+b^{2}+b^{2}+c^{2}+c^{2}+a^{2} & =2 a b+2 b c+2 c a \\
a^{2}-2 a b+b^{2}+b^{2}-2 b c+c^{2}+c^{2}-2 c a+a^{2} & =0 \\
(a-b)^{2}+(b-c)^{2}+(c-a)^{2} & =0
\end{aligned}
$$

This sum of three non-negative real numbers equals zero, so each term must equal zero. Thus $a=b, b=c$, and $c=a$, so the triangle is equilateral.
Source: M. S. Klamkin, Mathematics Magazine 27 (May 1954), 287. Quoted in: "The Triangle Is Equilateral." Charles W. Trigg, Mathematical Quickies: 270 Stimulating Problems with Solutions. New York: Dover Publishing Inc. (1985), p. 14, 95.

