Problem of the Week \#5
(Fall 2019)

You are about to play a game. You will roll an even number of fair 20-sided dice (with their faces numbered from 1 to 20 as usual), and you win a prize if more than half of them come up showing single-digit numbers. If you get to choose, how many dice should you roll?

Solution:

You should roll 10 dice.
Proof. On any given die, the probability of a success (a single-digit roll) is $p=\frac{9}{20}$, and $q=1-p=\frac{11}{20}$ is the probability of a failure.
Suppose you choose to roll $2 k+2$ dice. You can start by rolling $2 k$ dice, then finish by rolling the other two. Once you've rolled the first $2 k$ dice, you can award yourself a "virtual" win or loss, according to whether you would have won the prize or not if you'd chosen to roll only $2 k$ dice. Usually, your result is the same as your virtual result. The exceptions are:

- You roll k successes on the first $2 k$ dice (a virtual loss), then roll two successes.
- You roll $k+1$ successes on the first $2 k$ dice (a virtual win), then roll two failures.

Therefore, by choosing to roll $2 k+2$ dice instead of $2 k$ you have increased your probability of winning the prize by

$$
\Delta(k)=p^{2}\binom{2 k}{k} p^{k} q^{k}-q^{2}\binom{2 k}{k+1} p^{k+1} q^{k-1} .
$$

Your k is locally optimal when $\Delta(k) \geq 0$ but $\Delta(k+1) \leq 0$, and $\Delta(k) \geq 0$ if and only if:

$$
\begin{aligned}
p^{2}\binom{2 k}{k} p^{k} q^{k} & \geq q^{2}\binom{2 k}{k+1} p^{k+1} q^{k-1} \\
\frac{(2 k)!}{k!k!} p^{k+2} q^{k} & \geq \frac{(2 k)!}{(k+1)!(k-1)!} p^{k+1} q^{k+1} \\
\frac{p}{k} & \geq \frac{q}{k+1} \\
k p+p & \geq k q \\
p & \geq k(q-p) \\
k & \leq \frac{p}{q-p}=\frac{9 / 20}{2 / 20}=\frac{9}{2} .
\end{aligned}
$$

So the best choice is to roll $2 k+2$ dice for $k=4$; i.e., you should roll 10 dice.
Source: "Winning an Unfair Game." Frederick Mosteller, Fifty Challenging Problems in Probability with Solutions. Reading: Addison-Wesley (1965), p. 11, 66-67.

