Problem of the Week \#4
(Fall 2019)

How many ordered pairs of integers (a, b) with $2 \leq a \leq 2019$ and $2 \leq b \leq 2019$ have the property that $\log _{a} b+6 \log _{b} a=5$?

Solution:

Let $x=\log _{b} a$. (Since $a \neq 1$, we have $x \neq 0$.) By the base change formula,

$$
\log _{a} b=\frac{\log _{b} b}{\log _{b} a}=\frac{1}{x},
$$

so we are looking for pairs (a, b) with:

$$
\begin{aligned}
\frac{1}{x}+6 x & =5 \\
6 x^{2}-5 x+1 & =0 \\
(3 x-1)(2 x-1) & =0 \\
x=1 / 3 & \text { or } x=1 / 2
\end{aligned}
$$

If $\log _{b} a=x=\frac{1}{3}$, then $a=b^{1 / 3} \leq 2019^{1 / 3}<13$, so $2 \leq a \leq 12$. Each of these values of a can be paired with the integer $b=a^{3} \leq 2019$.
If $\log _{b} a=x=\frac{1}{2}$, then $a=b^{1 / 2} \leq 2019^{1 / 2}<45$, so $2 \leq a \leq 44$. Each of these values of a can be paired with the integer $b=a^{2} \leq 2019$.
This yields a total of $11+43=54$ ordered pairs.
Source: 2005 AIME-2, Problem \#5. In Scott A. Annin, A Gentle Introduction to the American Invitational Mathematics Exam. MAA Press, 2015, pp. 123, 302.

