

PROBLEM OF THE WEEK #4 (Fall 2019)

How many ordered pairs of integers (a, b) with $2 \le a \le 2019$ and $2 \le b \le 2019$ have the property that $\log_a b + 6 \log_b a = 5$?

Solution:

Let $x = \log_b a$. (Since $a \neq 1$, we have $x \neq 0$.) By the base change formula,

$$\log_a b = \frac{\log_b b}{\log_b a} = \frac{1}{x},$$

so we are looking for pairs (a, b) with:

$$\frac{1}{x} + 6x = 5$$

$$6x^2 - 5x + 1 = 0$$

$$(3x - 1)(2x - 1) = 0$$

$$x = 1/3 \text{ or } x = 1/2$$

If $\log_b a = x = \frac{1}{3}$, then $a = b^{1/3} \le 2019^{1/3} < 13$, so $2 \le a \le 12$. Each of these values of a can be paired with the integer $b = a^3 \le 2019$.

If $\log_b a = x = \frac{1}{2}$, then $a = b^{1/2} \le 2019^{1/2} < 45$, so $2 \le a \le 44$. Each of these values of a can be paired with the integer $b = a^2 \le 2019$.

This yields a total of 11 + 43 = 54 ordered pairs.

Source: 2005 AIME-2, Problem #5. In Scott A. Annin, A Gentle Introduction to the American Invitational Mathematics Exam. MAA Press, 2015, pp. 123, 302.