Problem of the Week \#3
(Fall 2019)

The number 142857 becomes exactly three times as great when its initial (decimal) digit is transferred from its beginning to its end:

$$
142857 \times 3=428571
$$

Show that there is no positive integer which becomes exactly seven times as great when its initial (decimal) digit is transferred from its beginning to its end.

Solution:

Let n be a positive integer with $k+1$ digits. Then $n=d \cdot 10^{k}+r$, where d is the initial digit of n and r is a number with (up to) k digits.

When the digit d moves from the beginning to the end of the number, the new number is $10 r+d$, which still has (up to) $k+1$ digits.

Suppose for the sake of contradiction that $10 r+d=7 n$. Since $7 n$ is a $(k+1)$-digit number, the digit d must be 1 ; otherwise $7 n \geq 14 \cdot 10^{k}$ would have $k+2$ digits. Now we have $10 r+1=7 n$. Solving for r, we find that

$$
r=\frac{7 \cdot 10^{k}-1}{3}>\frac{7}{3} \cdot 10^{k}>10^{k} .
$$

This means that r has more than k digits, which is the desired contradiction.

Source: D.O. Shklarsky, et al. The USSR Olympiad Problem Book. Mineola: Dover Publications, Inc, 1993. pp. 12, 111.

