PROBLEM OF THE WEEK \#2
(Fall 2019)

How many 19-digit strings of Xs and Os are there that begin with an O , end with an O , contain no two consecutive Os, and contain no three consecutive Xs?

Solution:

There are 65 such strings.
Proof. Suppose such a string contains k Os, and therefore $19-k$ Xs. The Os separate the Xs into $k-1$ "bunches." Since there are no two consecutive Os, each bunch contains at least one X; since there are no three consecutive Xs, each bunch contains at most two Xs. Thus each bunch must contain a "mandatory X," and may also contain an "extra X."
There are $k-1$ mandatory Xs , and there can't be more mandatory Xs than there are Xs , so $k-1 \leq 19-k$, which means $k \leq 10$. The other $20-2 k$ Xs are extra Xs, and there can't be more extra Xs than there are bunches, so $20-2 k \leq k-1$, which means $k \geq 7$.
The number of strings with k Os is now equal to the number of ways to choose $20-2 k$ of the $k-1$ bunches to contain our extra Xs. Therefore, the total number of strings of the desired type is

$$
\sum_{k=7}^{10}\binom{k-1}{20-2 k}=\binom{6}{6}+\binom{7}{4}+\binom{8}{2}+\binom{9}{0}=1+35+28+1=65
$$

Source: MAA American Mathematics Competitions, "Wednesday's Problem of the Day," MathFest 2019.

