Problem of the Week \#1
(Fall 2019)

Five matchsticks of equal length lie end to end, with their ends on the sides of a triangle, as shown in the figure below. What is the measure of the marked angle at the top vertex of the triangle?

Solution:

The angle measure is $\frac{\pi}{5}$ radians, or 36°.
Proof. Label points as in the figure, and let $\theta=\angle A C B$. Since $\triangle A C E$ and $\triangle B C D$ are isosceles, $\angle C A E=\angle C B D=\theta$, which leaves $\angle A E C=\angle B D C=\pi-2 \theta$. Hence $\angle A D B=$ $\angle A E B=2 \theta$. Since $\triangle A B D$ and $\triangle A B E$ are isosceles, $\angle B A D=\angle A B E=2 \theta$, and so $\angle B A E=$ $\angle A B D=\theta$. Now, from $\triangle A B D$ (or $\triangle A B E$), we have $5 \theta=\pi$, so $\theta=\frac{\pi}{5}$.

Source: "Five Matches." Alex van den Brandhof, et al. Half a Century of Pythagoras Magazine. MAA Press (2015), p. 231.

