PROBLEM OF THE WEEK \#10

(Fall 2018)

Find a rational number y for which $\sqrt{y^{2}-5}$ and $\sqrt{y^{2}+5}$ are both rational.

Solution:

If k is a common denominator of $y, \sqrt{y^{2}-5}$, and $\sqrt{y^{2}+5}$, then $P=k y, Q=k \sqrt{y^{2}-5}$, and $R=k \sqrt{y^{2}+5}$ are integers, and so

$$
\left(Q^{2}, P^{2}, R^{2}\right)=\left(P^{2}-5 k^{2}, P^{2}, P^{2}+5 k^{2}\right)
$$

are three perfect squares in arithmetic progression.

On the other hand, if the right triangles in the figure have side lengths $U<V<W$ and area A, then

$$
\left((V-U)^{2}, W^{2},(V+U)^{2}\right)=\left(W^{2}-4 A, W^{2}, W^{2}+4 A\right)
$$

are three perfect squares in arithmetic progression.
Hence we shall seek $k y=P=W$, where (U, V, W) is a (primitive) Pythagorean triple, $A=\frac{1}{2} U V$, and $4 A=5 k^{2}$. Because 2 and 5 are prime, this last equation implies that k must be even and therefore $A / 5=(k / 2)^{2}$ must be a perfect square. A short search yields:

$$
(U, V, W)=(9,40,41) \Rightarrow A=180 \Rightarrow(k / 2)^{2}=36 \Rightarrow|k|=12 \Rightarrow|y|=\frac{41}{12} .
$$

Taking $y= \pm \frac{41}{12}$, we have: $\sqrt{y^{2}-5}=\sqrt{\frac{1681-720}{144}}=\frac{31}{12}$ and $\sqrt{y^{2}+5}=\sqrt{\frac{1681+720}{144}}=\frac{49}{12}$.
Remark. According to [Che18], this problem was proposed by John of Palermo in 1220.

Source:

[Che18] Stephanie Chen, Rational right triangles of a given area, American Mathematical Monthly 125 (August 2018), no. 8, 689-703.

