PROBLEM OF THE WEEK \#2

(Fall 2018)

This weekend I went to a 20 -team round robin Quidditch tournament, which means that each team played every other team exactly once.
At the end of the tournament, each team's number of wins was a perfect square, and at least as many teams finished with 16 wins as with 9 wins. There were no ties.
Exactly how many teams ended up with 16 wins?

Solution:

Each team played exactly 19 games. Let (a, b, c, d, e) be the number of teams with ($0,1,4,9,16$) wins respectively. We are given that $d \leq e$.
The 16 -win teams lost 3 games each, for a total of $3 e$ losses. There were $\binom{e}{2}$ games between 16 -win teams. Thus

$$
\begin{aligned}
\binom{e}{2} & \leq 3 e \\
e(e-1) & \leq 6 e \\
e^{2}-7 e & \leq 0 \\
e & \leq 7
\end{aligned}
$$

On the other hand: There were $\binom{20}{2}=190$ games. Thus

$$
\left\{\begin{align*}
a+b+c+d+e & =20 \tag{1}\\
b+4 c+9 d+16 e & =190 .
\end{align*}\right.
$$

Subtracting (1) from (2) yields $-a+3 c+8 d+15 e=170$. Solving this equation, and (1), for c, and equating the results, we obtain:

$$
\begin{aligned}
\frac{1}{3}(170+a-8 d-15 e) & =20-a-b-d-e \\
\frac{1}{3}(110+4 a+3 b) & =4 e+\frac{5}{3} d \\
\frac{1}{3}(110) & \leq \frac{17}{3} e^{\quad(\text { since } a \geq 0, b \geq 0, \text { and } d \leq e)} \\
6.47 & <e
\end{aligned}
$$

Since $6<e \leq 7$ and e is an integer, we have $e=7$.
Source: Inspired by Velleman, Dan, and Rob Leduc. "Ultimate Round Robin." Macalester College Problem of the Week 886 (31 March 1999), available at http://stanwagon.com/ potw/spring99/p886.html.

