Problem of the Week \#6
(Fall 2017)

Evaluate the infinite product:

$$
3^{1 / 3} \cdot 9^{1 / 9} \cdot 27^{1 / 27} \cdot 81^{1 / 81} \ldots
$$

Solution:

$$
\begin{aligned}
P & =3^{1 / 3} \cdot 9^{1 / 9} \cdot 27^{1 / 27} \cdot 81^{1 / 81} \ldots \\
P & =3^{1 / 3} \cdot 3^{2 / 9} \cdot 3^{3 / 27} \cdot 3^{4 / 81} \ldots \\
\log _{3} P & =\sum_{n=1}^{\infty} \frac{n}{3^{n}}
\end{aligned}
$$

Now choose your favorite way of applying the geometric series formula:

$$
\begin{aligned}
& \text { (1) Define a power series: } \\
& f(x)=\sum_{n=1}^{\infty} \frac{n x^{n-1}}{3^{n}} \\
& \int f(x) d x=C+\sum_{n=1}^{\infty}\left(\frac{x}{3}\right)^{n} \\
& \int f(x) d x=C+\frac{x / 3}{1-(x / 3)}, \quad x \in(-3,3) \\
& f(x)=\frac{3}{(3-x)^{2}} \\
& \log _{3} P=f(1)=\frac{3}{4} \\
& \text { (2) } \\
& \begin{aligned}
\log _{3} P & =\frac{1}{3}+\frac{2}{9}+\frac{3}{27}+\frac{4}{81}+\cdots \\
& =\frac{1}{3}\left(1+\frac{2}{3}+\frac{3}{9}+\frac{4}{27}+\cdots\right) \\
& =\frac{1}{3}\left(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\cdots\right)^{2} \\
& =\frac{1}{3}\left(\frac{1}{1-(1 / 3)}\right)^{2} \\
& =\frac{3}{4}
\end{aligned}
\end{aligned}
$$

Either way, since $\log _{3} P=\frac{3}{4}$, we have $P=3^{3 / 4}=\sqrt[4]{27}$.

