

Problem of the Week #5 $_{\rm (Fall\ 2017)}$

- (a) Let f and g be functions for which $f \circ g = g$ and $g \circ f = f$. Prove: $f \circ f = f$ and $g \circ g = g$.
- (b) Find distinct functions f and g with domain \mathbb{R} for which $f \circ g = g$ and $g \circ f = f$.

Solution:

- (a) $f \circ f = f \circ (g \circ f) = (f \circ g) \circ f = g \circ f = f$, and by symmetry $g \circ g = g$.
- (b) There are many solutions. For one example, let $f(x) = \lfloor x \rfloor$ and $g(x) = \lceil x \rceil$. This means that f(x) is the greatest integer less than or equal to x, while g(x) is the least integer greater than or equal to x.

Suppose $n \in \mathbb{Z}$. Then:

- $f(g(n)) = \lfloor \lfloor n \rfloor \rfloor = \lfloor n \rfloor = n = g(n),$
- $g(f(n)) = [\lfloor n \rfloor] = [n] = n = f(n).$

Suppose now that $x \in \mathbb{R}$ and n < x < n + 1. Then:

- $f(g(x)) = \lfloor \lceil x \rceil \rfloor = \lfloor n+1 \rfloor = n+1 = \lceil x \rceil = g(x),$
- g(f(x)) = [|x|] = [n] = n = |x| = f(x).

Thus $f \circ g = g$ and $g \circ f = f$, as desired.

Source: Swenson, Daniel. Functions whose composition satisfies a simple rule (preprint).