Problem of the Week \#5
(Fall 2017)
(a) Let f and g be functions for which $f \circ g=g$ and $g \circ f=f$. Prove: $f \circ f=f$ and $g \circ g=g$.
(b) Find distinct functions f and g with domain \mathbb{R} for which $f \circ g=g$ and $g \circ f=f$.

Solution:

(a) $f \circ f=f \circ(g \circ f)=(f \circ g) \circ f=g \circ f=f$, and by symmetry $g \circ g=g$.
(b) There are many solutions. For one example, let $f(x)=\lfloor x\rfloor$ and $g(x)=\lceil x\rceil$.

This means that $f(x)$ is the greatest integer less than or equal to x, while $g(x)$ is the least integer greater than or equal to x.
Suppose $n \in \mathbb{Z}$. Then:

- $f(g(n))=\lfloor\lceil n\rceil\rfloor=\lfloor n\rfloor=n=g(n)$,
- $g(f(n))=\lceil\lfloor n\rfloor\rceil=\lceil n\rceil=n=f(n)$.

Suppose now that $x \in \mathbb{R}$ and $n<x<n+1$. Then:

- $f(g(x))=\lfloor\lceil x\rceil\rfloor=\lfloor n+1\rfloor=n+1=\lceil x\rceil=g(x)$,
- $g(f(x))=\lceil\lfloor x\rfloor\rceil=\lceil n\rceil=n=\lfloor x\rfloor=f(x)$.

Thus $f \circ g=g$ and $g \circ f=f$, as desired.
Source: Swenson, Daniel. Functions whose composition satisfies a simple rule (preprint).

