

PROBLEM OF THE WEEK #2 (Fall 2017)

Let $\{x_0, x_1, x_2, ...\}$ be the sequence such that $x_0 = 1$ and (for $n \ge 0$)

 $x_{n+1} = \ln\left(e^{x_n} - x_n\right).$

Prove that the infinite series $\sum_{k=0}^{\infty} x_k$ converges, and find its sum.

Solution:

For $n \ge 0$,

$$\begin{aligned} x_{n+1} &= \ln (e^{x_n} - x_n) \\ e^{x_{n+1}} &= e^{x_n} - x_n \\ x_n &= e^{x_n} - e^{x_{n+1}} \end{aligned}$$

Thus we obtain a telescoping partial sum: $x_0 + \cdots + x_n = e^{x_0} - e^{x_{n+1}}$. Suppose for a moment that $\{x_n\}$ converges to L. Then $L = \ln(e^L - L)$; solving, we get L = 0. Since $x_0 = 1$, we have

$$\sum_{k=0}^{\infty} x_k = e^{x_0} - e^L = e - 1.$$

It remains to prove that the sequence $\{x_n\}$ converges. To begin, we claim that $\{x_n\}$ is bounded below by 0. The claim is proved by induction on n, beginning with $x_0 = 1 > 0$. Assume $x_k > 0$. Let $f(x) = e^x - x$. Then $f'(x) = e^x - 1$, so f'(x) is positive when x > 0. This means that f(x) is increasing on $[0, \infty)$. In particular,

$$f(x_k) > f(0)$$

$$e^{x_k} - x_k > 1$$

$$e^{x_{k+1}} > 1$$

$$x_{k+1} > 0$$

which proves the claim.

Now that we know $x_n > 0$ for all n, we have $e^{x_n} - e^{x_{n+1}} > 0$. This means $x_{n+1} < x_n$: the sequence $\{x_n\}$ is decreasing. Since $\{x_n\}$ is decreasing and bounded below by 0, $\{x_n\}$ converges by the bounded monotone convergence theorem, and so

$$\sum_{k=0}^{\infty} x_k = \boxed{e-1}.$$

Source: Kedlaya, Kiran, and Lenny Ng, "Solutions to the 77th William Lowell Putnam Mathematical Competition (Problem B1)."