Problem of the Week \#2

(Fall 2017)

Let $\left\{x_{0}, x_{1}, x_{2}, \ldots\right\}$ be the sequence such that $x_{0}=1$ and (for $n \geq 0$)

$$
x_{n+1}=\ln \left(e^{x_{n}}-x_{n}\right) .
$$

Prove that the infinite series $\sum_{k=0}^{\infty} x_{k}$ converges, and find its sum.

Solution:

For $n \geq 0$,

$$
\begin{aligned}
x_{n+1} & =\ln \left(e^{x_{n}}-x_{n}\right) \\
e^{x_{n+1}} & =e^{x_{n}}-x_{n} \\
x_{n} & =e^{x_{n}}-e^{x_{n+1}}
\end{aligned}
$$

Thus we obtain a telescoping partial sum: $x_{0}+\cdots+x_{n}=e^{x_{0}}-e^{x_{n+1}}$. Suppose for a moment that $\left\{x_{n}\right\}$ converges to L. Then $L=\ln \left(e^{L}-L\right)$; solving, we get $L=0$. Since $x_{0}=1$, we have

$$
\sum_{k=0}^{\infty} x_{k}=e^{x_{0}}-e^{L}=e-1
$$

It remains to prove that the sequence $\left\{x_{n}\right\}$ converges. To begin, we claim that $\left\{x_{n}\right\}$ is bounded below by 0 . The claim is proved by induction on n, beginning with $x_{0}=1>0$. Assume $x_{k}>0$. Let $f(x)=e^{x}-x$. Then $f^{\prime}(x)=e^{x}-1$, so $f^{\prime}(x)$ is positive when $x>0$. This means that $f(x)$ is increasing on $[0, \infty)$. In particular,

$$
\begin{aligned}
f\left(x_{k}\right) & >f(0) \\
e^{x_{k}}-x_{k} & >1 \\
e^{x_{k+1}} & >1 \\
x_{k+1} & >0
\end{aligned}
$$

which proves the claim.
Now that we know $x_{n}>0$ for all n, we have $e^{x_{n}}-e^{x_{n+1}}>0$. This means $x_{n+1}<x_{n}$: the sequence $\left\{x_{n}\right\}$ is decreasing. Since $\left\{x_{n}\right\}$ is decreasing and bounded below by $0,\left\{x_{n}\right\}$ converges by the bounded monotone convergence theorem, and so

$$
\sum_{k=0}^{\infty} x_{k}=e-1 .
$$

Source: Kedlaya, Kiran, and Lenny Ng, "Solutions to the 77th William Lowell Putnam Mathematical Competition (Problem B1)."

