Problem of the Week \#1
(Fall 2017)

Evaluate and simplify, for all $x \in[0,2 \pi]$:

$$
F(x)=\int_{\sin x}^{\cos x} \sqrt{1-t^{2}} d t
$$

Solution:

By the first fundamental theorem of calculus and the chain rule,

$$
\begin{aligned}
F^{\prime}(x) & =\frac{d}{d x}\left[\int_{0}^{\cos x} \sqrt{1-t^{2}} d t-\int_{0}^{\sin x} \sqrt{1-t^{2}} d t\right] \\
& =-(\sin x) \sqrt{1-\cos ^{2} x}-(\cos x) \sqrt{1-\sin ^{2} x} \\
& =-(\sin x)|\sin x|-(\cos x)|\cos x| \\
& = \begin{cases}-1 & x \text { in quadrant I, } \\
\cos 2 x & x \text { in quadrant II, } \\
1 & x \text { in quadrant III, } \\
-\cos 2 x & x \text { in quadrant IV. }\end{cases} \\
F(x) & = \begin{cases}-x+C_{1} & x \text { in quadrant I, } \\
\frac{1}{2} \sin 2 x+C_{2} & x \text { in quadrant II, } \\
x+C_{3} & x \text { in quadrant III, } \\
-\frac{1}{2} \sin 2 x+C_{4} & x \text { in quadrant IV. } .\end{cases}
\end{aligned}
$$

Note from the definition that $F(\pi / 4)=\int_{\sqrt{2} / 2}^{\sqrt{2} / 2} \sqrt{1-t^{2}} d t=0$, so $C_{1}=\pi / 4$. Likewise, $F(5 \pi / 4)=0$, so $C_{3}=-5 \pi / 4$.
Finally, since F is differentiable, F is continuous. Continuity at $x=\pi / 2$ yields

$$
-\frac{\pi}{2}+\frac{\pi}{4}=\frac{1}{2} \sin \pi+C_{2} \Rightarrow C_{2}=-\frac{\pi}{4},
$$

and from continuity at $x=3 \pi / 2$, we get

$$
\frac{3 \pi}{2}-\frac{5 \pi}{4}=-\frac{1}{2} \sin 3 \pi+C_{4} \Rightarrow C_{4}=\frac{\pi}{4} .
$$

Hence $F(x)= \begin{cases}-x+\frac{\pi}{4} & x \text { in quadrant I, } \\ \frac{1}{2} \sin 2 x-\frac{\pi}{4} & x \text { in quadrant II, } \\ x-\frac{5 \pi}{4} & x \text { in quadrant III, } \\ -\frac{1}{2} \sin 2 x+\frac{\pi}{4} & x \text { in quadrant IV. }\end{cases}$

Source: Maltenfort, Michael. "A Function Worth a Second Look." College Mathematics Journal 48:1 (January 2017), 55-57.

