Problem of the Week \#9
(Fall 2016)

Find all perfect squares in the sequence $(9,89,889,8889,88889, \ldots)$.

Solution:

The only perfect square in the sequence is 9 .
Proof. Suppose $n^{2}=8 \ldots 89$ is a d-digit number, with $d>1$. Then

$$
n^{2}-1=8 \ldots 88=8(1 \ldots 11)=8\left(\frac{10^{d}-1}{9}\right)
$$

Since n^{2} is odd, n is odd. Writing $n=2 k+1$, we get

$$
\begin{aligned}
4 k^{2}+4 k & =8\left(\frac{10^{d}-1}{9}\right) \\
\frac{9 k^{2}+9 k+2}{2} & =10^{d} \\
(3 k+2)(3 k+1) & =2^{d+1} 5^{d}
\end{aligned}
$$

Suppose for the sake of contradiction that $2 \mid(3 k+c)$ and $5 \mid(3 k+c)$, where $c \in\{1,2\}$. Then $2+(3 k+c \pm 1)$ and $5+(3 k+c \pm 1)$. This means that $c=2$ and $3 k+1=1($ since $3 k+2 \neq 1)$, so $k=0$, and therefore $d=0$, which is impossible.
Suppose now for the sake of contradiction that $3 k+2=2^{d+1}$ and $3 k+1=5^{d}$. Since $5^{d}<2^{d+1}$, $\left(\frac{5}{2}\right)^{d}<2$, so $d<1$, which is impossible.
We conclude that $3 k+2=5^{d}$ and $3 k+1=2^{d+1}$. Since $d>1$,

$$
3 k+2=5^{d}=(4+1)^{d}>4^{d}+1^{d}=2^{2 d}+1>2^{d+1}+1=(3 k+1)+1=3 k+2,
$$

which is impossible.
Source: Schoenecker, Kevin. "Crazy 8s (The Sandbox, Problem 346)." Math Horizons (November 2016), 30.

See also: Jaroma, J. H. "Triangular repunit - there is but 1." Czech Math J. 60 (2010), 1075.

