Problem of the Week \#8
(Fall 2016)

Evaluate:

$$
\lim _{n \rightarrow \infty}\left[\frac{1}{\sqrt{n^{2}+1}}+\frac{1}{\sqrt{n^{2}+4}}+\frac{1}{\sqrt{n^{2}+9}}+\frac{1}{\sqrt{n^{2}+16}}+\cdots+\frac{1}{\sqrt{n^{2}+n^{2}}}\right] .
$$

Solution:

$$
\lim _{n \rightarrow \infty}\left[\frac{1}{\sqrt{n^{2}+1}}+\frac{1}{\sqrt{n^{2}+4}}+\frac{1}{\sqrt{n^{2}+9}}+\cdots+\frac{1}{\sqrt{n^{2}+n^{2}}}\right]=\ln (1+\sqrt{2}) .
$$

Proof. Our goal is to evaluate

$$
\begin{aligned}
L & =\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{1}{\sqrt{n^{2}+k^{2}}} \\
& =\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{1}{\sqrt{n^{2}+k^{2}}} \\
& =\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{1}{n \sqrt{1+(k / n)^{2}}} \\
& =\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(x_{k}\right) \Delta x
\end{aligned}
$$

where $f(x)=\frac{1}{\sqrt{1+x^{2}}}, \Delta x=\frac{1}{n}$, and $x_{k}=0+k \Delta x$ for $1 \leq k \leq n$. This is the right Riemann sum for the definite integral of $f(x)$ over the interval $[0,1]$, so

$$
\begin{aligned}
L & =\int_{0}^{1} \frac{1}{\sqrt{1+x^{2}}} d x \\
& =\int_{0}^{\pi / 4} \frac{1}{\sqrt{1+\tan ^{2} \theta}} \sec ^{2} \theta d \theta \quad(x=\tan \theta) \\
& =\int_{0}^{\pi / 4} \sec \theta d \theta \\
& =\ln |\sec \theta+\tan \theta|_{\theta=0}^{\pi / 4} \\
& =\ln |\sqrt{2}+1|-\ln |1+0| \\
& =\ln (1+\sqrt{2})
\end{aligned}
$$

Source: Kaczkowski, Stephen. "The Limiting Value of a Series with Exponential Terms." Mathematics Magazine 89:4 (October 2016), p. 282.

