Problem of the Week \#4

(Fall 2016)

Let $x_{1}, x_{2}, \ldots, x_{n}$ be equally spaced points on the unit circle. What do you get if you multiply together the distances from x_{1} to the other $n-1$ points?

Solution:

The product equals n.
Proof. Working in the complex plane, we can rotate our points about the origin without changing the chord lengths. Thus our product is equal to

$$
\begin{aligned}
& \prod_{k=1}^{n-1}\left|1-e^{2 \pi k i / n}\right| \\
= & \lim _{z \rightarrow 1} \prod_{k=1}^{n-1}\left|z-e^{2 \pi k i / n}\right| \\
= & \lim _{z \rightarrow 1}\left[\prod_{k=0}^{n-1}\left|z-e^{2 \pi k i / n}\right|\right] /|z-1| \\
= & \lim _{z \rightarrow 1}\left|\frac{z^{n}-1}{z-1}\right| \\
= & \lim _{z \rightarrow 1} \sum_{d=0}^{n-1}\left|z^{d}\right| \\
= & \sum_{d=0}^{n-1} 1 \\
= & n .
\end{aligned}
$$

Source: Mudd Math Fun Facts. "Chords of a Unit Circle." https://www.math.hmc.edu/ funfacts/ffiles/20001.1-2-3.shtml

