Problem of the Week \#2
(Fall 2016)

Find integers x and y such that

$$
\left\{\begin{array}{rlr}
x^{2}-16 x+3 y & =20 \\
y^{2}+4 y-x & =-12
\end{array}\right.
$$

Solution:

Complete the square:

$$
\left\{\begin{aligned}
(x-8)^{2}+3 y & =84 \\
(y+2)^{2}-x & =-8
\end{aligned}\right.
$$

Let $a=x-8$ and $b=y+2$, and simplify:

$$
\left\{\begin{aligned}
a^{2}+3 b & =90 \\
b^{2}-a & =0
\end{aligned}\right.
$$

Thus $a=b^{2}$, and therefore:

$$
\begin{aligned}
b^{4}+3 b & =90 \\
b^{4}+3 b-90 & =0 \\
(b-3)\left(b^{3}+3 b^{2}+9 b+30\right) & =0
\end{aligned}
$$

So we get a solution by setting $b=3$, which yields $a=b^{2}=9$ and $(x, y)=(17,1)$.
In fact, this is the only solution. We know this because y is an integer only if b is an integer, and $f(b)=b^{3}+3 b^{2}+9 b+30$ has no integer roots. To see this, observe that

$$
f^{\prime}(b)=3 b^{2}+6 b+9=3(b+1)^{2}+6>0,
$$

so f is increasing. On the other hand, $f(-4)=-22$, and $f(-3)=3$. By Rolle's theorem and the intermediate value theorem, it follows that f has a unique real root, which lies in the interval $(-4,-3)$, and is therefore not an integer.
Source: Andreescu, Tito, and Jonathan Kane. Purple Comet! Math Meet: The first ten years. XYZ Press, 2013 (pp. 15, 128).

