Problem of the Week \# 1
(Fall 2016)

How long are the edges of a regular tetrahedron inscribed in the unit sphere?


## Solution:

The edge length is $\frac{2 \sqrt{6}}{3}$.
Proof. Set up a coordinate system so that one vertex of the tetrahedron is at ( $0,0,1$ ), and another is at $(\sin \phi, 0, \cos \phi)$. Then the other two vertices will be at $\left(-\frac{1}{2} \sin \phi, \pm \frac{\sqrt{3}}{2} \sin \phi, \cos \phi\right)$. [We can get these points using spherical coordinates, with $\theta \in\{0,2 \pi / 3,4 \pi / 3\}$.] If we call the edge length $D$, then, by the distance formula:

$$
\begin{aligned}
D^{2} & =\frac{9}{4} \sin ^{2} \phi+\frac{3}{4} \sin ^{2} \phi=3 \sin ^{2} \phi, \text { and } \\
D^{2} & =\sin ^{2} \phi+(1-\cos \phi)^{2}=2-2 \cos \phi .
\end{aligned}
$$

Therefore:

$$
\begin{aligned}
3\left(1-\cos ^{2} \phi\right) & =2-2 \cos \phi \\
3 \cos ^{2} \phi-2 \cos \phi-1 & =0 \\
(3 \cos \phi+1)(\cos \phi-1) & =0
\end{aligned}
$$

Since $\phi \in(0, \pi)$, we have $\cos \phi=-1 / 3$. This means $D^{2}=8 / 3$, and $D=\sqrt{\frac{8}{3}}=\frac{2 \sqrt{6}}{3}$.

